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This paper considers the asymptotic distribution for the horizontal displacement 
of a random walk in a medium represented by a two-dimensional lattice, whose 
transitions are to nearest-neighbor sites, are symmetric in the horizontal and 
vertical directions, and depend on the column currently occupied. On either side 
of a change-point in the medium, the transition probabilities are assumed to 
obey an asymptotic density condition. The displacement, when suitably normal- 
ized, converges to a diffusion process of oscillating Brownian motion type. 
Various special cases are discussed. 
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1. INTRODUCTION 

Recently, there has been interest in properties of random walks on several 
classes of anisotropic lattices which have different scattering characteristics 
for the walk from the different types of lattice sites. (~-3) A theme of this 
work is that the asymptotic properties of the random walk, and hence of 
the anisotropic diffusion it is supposed to approximate, depend only on the 
relative densities of the different types of scatterers and not on their spatial 
arrangements; specific instances of this result date back to Maxwell and 
Rayleigh. This paper will demonstrate that such results are to be expected 
for a much wider class of properties than previously considered. 

These walks serve as models for transport through an anisotropic 
medium. The case discussed in Refs. 1 and 2 is that of a two-dimensional 
lattice with two types of column, called "strong" and "weak," having 
different scattering characteristics. Our lattices are a multitype generaliza- 
tion of this arrangement. (4'5) 
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Seshadri et al. ~2) successfully analyzed properties of their walk such as 
mean-square displacements of the horizontal and vertical components, the 
probability of return to the origin, and the range, in the case of a strictly 
periodic array of the two-column types. Their proofs for more general 
arrays appear to have some technical deficiencies. Westcott, ~4) using a 
probabilistic argument, generalized the mean-square displacement results to 
an arbitrary collection of column types satisfying a uniform asymptotic 
density condition. His method provides an elementary treatment of the 
periodic case with arbitrary types. By much more subtle techniques, it is 
possible to show that the horizontal displacement obeys a central limit 
theorem without the requirement of uniformity in the asymptotic density; 
this was pointed out by a referee of Ref. 4. Finally, Heyde ~5) has estab- 
lished the asymptotic equivalence of the horizontal motion of the walk to 
rescaled Brownian motion, under an overlapping but somewhat different 
assumption to that of Ref. 4. This suggests that diffusion-limiting results 
may hold more generally, and that some asymptotic density condition is the 
fundamental requirement. 

Thinking of the two-column type case again, all these results contain 
some version of the assumption that the strong columns, say, occur in a 
roughly constant proportion throughout the entire medium. A simple exam- 
ple is when strong and weak columns strictly alternate. A more dramatic 
form of anisotropy is to assume there is an abrupt change in the nature of 
the diffusion medium at some point, when one expects significant changes 
in the behavior of the process on each side of this point; for example, when 
all columns to the left of some point are strong while those to the right are 
weak. In both these examples there is, in some sense, a 1 : 1 "mix" of strong 
and weak columns, and a question of considerable interest is whether the 
asymptotic results mentioned above, which certainly hold for the former, 
continue to hold for the latter. 

This question cannot apparently be resolved using the methods of 
previous work, since all rely critically at some stage on the asymptotic 
column-type densities on either side of any point existing and being equal. 
However, a general approach which covers all the cases is provided by 
work of Stone ~6) in which probabilistic methods, based on the use of local 
time for Brownian motion, are used to establish convergence of birth and 
death processes and random walks to limiting diffusions. A crucial require- 
ment is that the processes are "skip-free" in both directions, but this is the 
case in the present context. More analytical procedures seem necessary to 
deal with walks which allow more general steps than 0, + l, or - 1 ;  for 
deep results on their recurrence properties (which do not concern us here) 
see Kemperman. ~7) 

We note here that Stone's methods actually prove convergence of the 
random walk, and some associated quantities, in a rather stronger sense 
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than the convergence in distribution usually associated with central-limit- 
type results. This will be discussed further in Section 4. 

2. MODEL AND RESULTS 

We consider a random walk on a unit square lattice in •2 which, from 
a lattice site on column j ,  moves to either horizontal neighbor with 
probability pj and to either vertical neighbor with probability 1 _pj. We 

concentrate on the horizontal motion, described more formally as follows. 
Let (X,} (n = 0, 1 . . . .  ), X 0 = 0, be a symmetric random walk on the 

integers with transition probabilities 

P(Xn+ 1 = j +  l l X  n = j )  = p j  
(1) 

P(X,+, = j l X ,  = j ) =  1 - 2pj 

for j E 7/and n = 0, 1 . . . . .  To avoid triviality, take/~ > 0 ( j  E 77). 
Let 

- -  = + ~'k, - -  j = - ~  ~j k j=~ ,.j = ~ + ~ - ~  
(2) 

The periodic case occurs when, for some positive integers M, M' ,  

Ps =Pj-M" (J < 0), t~ =Pj+M (j  >i O) 

Finally, we use a.s.) and d to denote convergence almost surely and in 
distribution, respectively, and [x] to denote the integer part of x. 

Thoorem. Suppose that e~ and E k are o(1) as k--> oo. Then, 

sup In-l/2X[.,]- Y(t)l a'S')o (3) 
O<t<N 

as n--) oo for all N > 0 where (Y(t) ,  t >>. O} is a diffusion process on the 
same probability space as (X.} whose distribution is defined by 

r ( t )  = w ( A - ' ( t ) ) ,  t ~> 0 

(W(t), t >1 O) being standard Brownian motion and 

A (t) = fo'O-2(W(s)) as 

where o2(y) = 2 / y , y  >>. O, = 2/V' ,y  < O. 

The process Y(t) of the theorem, called oscillating Brownian motion if 
"/=~ y', is the diffusion with speed measure m(dy) = 2o-2(y)dy ,  o2(y) being 
defined above. 
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The theorem substantially extends the previous work on the subject 
except for that of Heyde (5) where a stronger form of convergence result is 
obtained but in a more restricted setting and under less general conditions. 

C o r o l l a r y .  Under the assumptions of the theorem, 

(i) n - 1 / 2 x n d  Y(1) 

as n ~ oo where Y(1) has density given by 

(7 ' / r r ) ' / 2 ( l  - O)e -vyV', y < 0 
f ( y )  = 

(y / 'a ' ) |120e  -vy ' /4,  .y >~ 0 

where 0 = ~/7/(~f~ + ~Tf). 

(ii) n -  l ( X2)  --* 2 / 7~7 ' 

a s  ? / - ->  0 0 .  

(iii) The theorem, and (i), (ii) above, continue to hold if the pj are 
random variables independent of the process, e k and ~'k are o(1) a.s., and we 
take expectations over the pj. 

Note that, in the case 7 = 7', (ii) is the result of Ref. 4 without any 
uniformity assumption while (i) is the result proved by the referee of Ref. 4 
by a different method. 

3. PROOFS 

Define the normalized process W.( t )=  n-1/ZXt.,l, t > O. Then, in the 
notation of Stone we have for n >  1, E n = ( i / n  1/2, - c ~  < i (  oo}, O n 
= l / n ,  x n = 0, q}") = 0, a/(") = i / n  1/2, and 

P(Wn((k + 1)/n)  = (i +_ l) /nl /2[ Wn(k /n)  = i / n  U2) =Pi 

P ( W . ( k / n )  = i/n'/21 W . ( k / n ) =  i / n  '/2) = 1 - 2 p i  

while 

so that 

m . ( ( / / . " } )  = 1/(p, . l /2) 

lira ran(x) = re(x) = { 7x, x > 0 
n---*oo " " 7'  X, X ~ 0 

using Eq. (2). Then, re(x) is just the speed measure of an oscillating 
2 (y2 Brownian motion Y(t), say, with a+ =2 / 'F ,  = 2 / 7 '  (Keilson and 
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Wellner(8)). The process Y ( t )  is continuous a.s. and Theorem 2 of Stone (6) 
immediately gives the result of the theorem. 

Since W. converges weakly to the diffusion process Y we have 

w.(1)  = r (1)  

and the form for the density of Y(1) is given in Corollary 1 of Keilson and 
Wellner. (s) This deals with part (i) of the Corollary. 

Part (ii) of the Corollary is obtained by noting that { n -  IX~, n >/ 1 ) is 
uniformly integrable using the argument in the proof of Corollary 2 of 
Heyde.  (5) The required result then follows similarly since (y2(1)> 

= 2 / ~ ' .  Part (iii) is a consequence of dominated convergence. 

4. AN EXAMPLE AND DISCUSSION 

A striking illustration of our results comes from considering the 
case (~'2) of strong and weak columns in a periodic setting. Let t, t', re- 
spectively, be the transition probabilities of strong and weak columns; 
choose M = M '  and take pj --- t' ( j  < O, j v ~ - r M ) ,  pj = t ( j  = - r M ) ,  
pj = t ( j  > O, j  ~ = r M ) , p j  = t' ( j  --- r M ) ,  where r = 1,2 . . . . .  That is, to the 
left of the origin every Mth column is strong, the others being weak, while 
to the right the situation is reversed. Then a little algebra shows that 

Var(X. ) ~ 2 n / {  f iG 2 + (1 -- fl )A 2 )1/2 

where 

, ,:,, # { )  , = ( , _  , 

(4) 

That is, the diffusion coefficient involves a mixture of the arithmetic and 
geometric means of l / t  and 1 / t ' .  When M = 2, the medium is regularly 
anisotropic (alternating strong and weak columns) and we have A; when 
M = 1 or oo there are two semi-infinite blocks, of strong and weak 
columns, respectively, the medium has an abrupt change in anisotropy, and 
we have G. (These are the two examples of Section 1.) Equation (4), then, 
provides a natural occurrence of a smooth transition between A and G as 
the irregularity of the medium's anisotropy increases. 

The choice of zero as both the starting point of (An) and the change 
point in the medium is purely for convenience. It is clear that the results 
still hold if these two points differ, since only a finite number of steps is 
involved and the walk is null-recurrent whenever (i) holds. 

Part (ii) of the Corollary provides the vertical mean-square displace- 
ment also since, by symmetry, the mean-square displacement after n steps 
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for the two-dimensional walk is n. The distribution of the vertical displace- 
ment is governed by a rather different mechanism and will not be treated 
here. Results about the two-dimensional walk will also require another 
approach, since Stone's method is closely tied to one-dimensional processes. 

Finally, we say a little about the type of convergence proved in the 
theorem, and its consequences. Equation (3) states that the path of our 
random walk, suitably normalized, is uniformly close to the path of an 
oscillating Brownian motion over any finite time interval, with probability 
one. This is clearly a very strong result, considerably more far-reaching 
than the classical central limit type of convergence deduced as (i). One 
important immediate consequence of Eq. (3) is that the normalized walk 
converges weakly to oscillating Brownian motion, meaning that the proba- 
bility measures on the space of paths converge, if we endow the space with 
a suitable topology. And then we can deduce that any functional of the 
paths which is continuous in this topology almost surely with respect to 
oscillating Brownian motion converges to the same functional of oscillating 
Brownian motion (Billingsley, (9) Theorem 5.1). So there is a very extensive 
set of asymptotic properties of the walk which depend only on asymptotic 
densities existing; examples are the supremum of the process and the 
occupation time of particular sets. This is the basis of our assertion in the 
Introduction that the property of dependence only on density is ubiquitous 
for such walks. 
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